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In this paper the normal-mode small-amplitude waves of high-speed jets are 
investigated analytically and computationally. Three families of instability waves, 
each having a distinct wave pattern and propagation characteristics, have been 
found. One of the families of waves is the familiar Kelvin-Helmholtz instability 
wave. The other two families of waves do not appear to have been clearly identified 
and systematically studied before. Waves of one of the new wave family propagate 
with supersonic phase velocities relative to the ambient gas. They are, therefore, 
referred to as supersonic instability waves. Waves of the other family have subsonic 
phase velocities. Accordingly they are called subsonic waves. The subsonic waves 
have the unusual property that they are unstable only for jets with finite thickness 
mixing layers. They are neutral waves when calculated by a vortex-sheet jet 
model. 

Earlier Oertel (1979, 1980, 1982) using a novel optical technique observed in a 
series of experiments three sets of waves in high-speed jets. The origin of these waves, 
however, remains so far unexplained and a theory has yet to be developed. In the 
present study it will be shown that the computed wave patterns and propagation 
characteristics of the Kelvin-Helmholtz, the supersonic and the subsonic instability 
waves match essentially those observed by Oertel. The physical mechanisms which 
give rise to the three families of waves as well as some of the most salient 
characteristic features of each set of waves are discussed and reported here. 

1. Introduction 
Recently Oertel (1979, 1980, 1982) carried out a series of experimental studies on 

the instability waves of high-speed jets. In his experiments the jets were formed by 
hot or cold gases issued through convergent-divergent nozzles mounted at the end 
of a shock tube. Observations indicated that these shock-tube generated jets had 
very uniform cores surrounded by thin mixing layers. By using a novel optical 
technique, Oertel was able to identify three families of waves in his jets. Each family 
of waves had its distinct characteristics and propagation speed. Pictures of these 
waves are shown in figure 1. Associated with the first set of waves (labelled W )  is a 
strong acoustic near field. In the region immediately outside the jet the waves appear 
as nearly parallel straight lines trailing the flow of the jet. This near-field wave 
pattern was observed by several investigators earlier while studying the topic of 
sound generation by instability waves (e.g. Lowson & Ollerhead 1968; Rosales 1970; 
Tam 1971; Chan & Westley 1973). Tam (1971) and later Chan & Westley (1973) 
suggested and showed that this near-field acoustic wave pattern was generated by 
the Kelvin-Helmholtz instability waves of the flow. By using a vortex-sheet model 
they were able to calculate correctly the angle of inclination and the speed of 
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FIGITRE 1. Pictures showing the wave patterns of the three sets of waves observed by OPrtel 
(1980) in high-speed jets. Flow is from left to right. (Reproduced with permission.) 

propagation of the wavefronts. Thus the first family of instability waves observed by 
Oertel is the familiar Kelvin-Helmholtz instability. 

The second family of waves observed by Oertel (labelled Win figure 1 )  has a near 
acoustic field in which the wavefronts are almost normal to the jet boundary. Within 
the range of jet flow parameters covered in Oertel’s experiment the propagation 
speed of this set of waves is found to be less than that of the Kelvin-Helmholtz 
instability waves. The third family of waves (labelled W” in figure l ) ,  unlike the first 
two sets of waves, appears to have no near field. The waves seem to be confined 
primarily inside the jet. Within the jet the waves display a characteristic cross- 
hatched pattern. To the best of our knowledge, no one has made a clear identification 
or association of these last two families of waves to any known instability of high- 
speed jets. One of the main objectives of this paper is to provide a theoretical 
foundation to  these waves. It will be shown theoretically that a high-speed jet with 
thin mixing layers can support three distinct families of instability waves. These 
waves exhibit near-field patterns and propagation characteristics which match those 
observed by Oertel(l979, 1980,1982) and others (in those cases of Kelvin-Helmholtz 
instability). 

Before embarking on an analysis of the instability wave modes of high-speed jets 
it is found useful first to examine physically why these jets can support three distinct 
families of waves. Earlier Ackeret (see Liepmann & Puckett 1947 ; Papamoschou & 
Roshko 1986) had provided a physical explanation of the mechanism responsible for 
the Kelvin-Helmholtz instability in a thin shear layer. Here it will be shown that 
Ackeret’s physical argument can be extended to the case of high-speed jets to 
explain why these jets can sustain three classes of waves. For the sake of 
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FIGURE 2.  Kelvin-Helmholtz instability mechanism at subsonic Mach number. + , high pressure 
region; - , low pressure region. (a) Stationary frame of reference. ( b )  Wave frame of reference. 

completeness Ackeret's explanation of the Kelvin-Helmholtz instability mechanism 
will be briefly reviewed. 

Consider a two-dimensional vortex sheet separating a fluid a t  rest and a fluid 
moving a t  a subsonic velocity U. It will be assumed that the vortex sheet is deformed 
by a Kelvin-Helmholtz wave with a phase velocity c as shown in figure 2 (a) .  Ackeret 
suggested that one should view the flow not in the stationary frame of reference but 
in a moving frame travelling with the phase velocity c of the wave. In  this wave frame 
the flow is as shown in figure 2 ($). Now for the flow above the vortex sheet, the vortex 
sheet may be regarded as a wavy wall. So within a quasi-steady approximation the 
flow is that of a uniform flow past a wavy wall. The solution of this problem is well 
known (see e.g. Liepmann & Roshko 1957, ch. 8). At subsonic Mach number the 
pressure is lowest at the crests of the wavy wall and highest at the troughs. Similar 
consideration may also be applied to the flow below the vortex sheet. Again the 
pressure is lowest at the crests and highest at the troughs. Since the crests and 
troughs interchange on the two sides of the vortex sheet the result is that a net 
pressure imbalance would exist across the thin mixing layer in the quasi-steady 
approximation. This pressure imbalance is in phase with the vortex-sheet 
displacement and hence would tend to increase its amplitude leading to the well- 
known Kelvin-Helmholtz instability 

Now suppose the Mach number of the flow is highly supersonic so that in the wave 
frame of reference the flows on the two sides of the vortex sheet are supersonic as 
shown in figure 3. For supersonic flow over a wavy wall it is known that the pressure 
distribution is no longer in phase but rather 90" out of phase with the displacement 
of the wall. This results in identical pressure distribution on both sides of the vortex 
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FIGURE 3. Pressure distribution on the two sides of a vortex-sheet layer a t  supersonic convective 
Mach numbers as viewed in the wave frame of reference. + , high-pressure region ; - ~ low-pressure 
region. 

sheet. The net effect is that the wave becomes neutrally stable. This is in agrecmcnt 
with the prediction of Miles (1958) using hydrodynamic stability theory. 

For circular jcts the situation is somewhat different. The cylindrical vortex sheet 
which bounds the jet also tends to reflect acoustic disturbances which impinge on it. 
Thus acoustic disturbances could be trapped inside the jet bouncing back and forth 
forming a periodic Mach wave system as shown in figure 4. The condition under 
which such a Mach wave system can exist is that in the wave frame of reference the 
flow inside the jet is supersonic. Since acoustic disturbances can propagate upstream 
(the phase velocity c of the wave is negative in this case) or downstream (c is positive) 
relative to the flow of the jet, this type of Mach wave system exists in supersonic as 
well as subsonic jets as long as uj-c is greater than the speed of sound where uj is 
the jet velocity. Of course, for subsonic jets c would have to be negative, namely, the 
wave is an upstream propagating wave. The pressure distribution associated with a 
Mach wave system inside a cylindrical wavy wall is given in the Appendix. It is easy 
to see from the formula given there, equation (A 3), that depending on the 
wavelength, the pressure distribution may be 180' out of phase with the radial 
vortex-sheet displacement. The wave speed c may, however, be subsonic or 
supersonic relative to the ambient gas. Let us first consider the case of subsonic 
waves. In the wave frame of reference the ambient flow is subsonic. The pressure 
distribution associated with subsonic flow outside a wavy cylinder may be found in 
the Appendix, equation (A 4). Not surprisingly, the pressure is 180" out of phase with 
the radial displacement of the cylindrical wavy wall. Thus, by suitable choice of the 
wavelength of the Mach wave system, pressure balance on the two sides of the thin 
mixing layer of the jet is possible (see figure 4a). This implies that the vortex-sheet 
jet can support a family of neutral waves. For supersonic jets it will be shown later 
in this paper that if the effect of finite mixing-layer thickness is included this family 
of waves actually are unstable. Clearly with subsonic phase velocity relative to the 
ambient gas the amplitudes of these waves must decay exponentially in the radial 
direction outside the jet. In other words the disturbances associated with this family 
of waves are confined mainly inside the jet. These subsonic waves are the third 
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FIQURE 4. Pressure distribution on the outside surface of a cylindrical wavy vortex sheet jet as 
viewed in the wave frame of reference. Also shown is a Mach wave system inside the jet. (a)  
Subsonic flow outside. (b)  Supersonic flow outide. 

family of waves observed by Oertel (1980). To distinguish the waves of this family 
from the other two they will be referred to as the subsonic (instability) waves in the 
rest of this paper. 

For very high-speed jets the phase velocity, c, of the Mach wave system may 
become supersonic relative to the ambient gas. In this case the flow is supersonic both 
inside and outside the jet with respect to the wave frame as shown in figure 4(b).  The 
pressure distribution associated with a steady supersonic flow over a cylindrical 
wavy wall has been determined in the Appendix, equation (A 6). On comparing the 
pressure distribution formulae inside and outside the cylindrical vortex sheet it is 
evident that pressure balance is impossible regardless of the choice of wavelength. 
Hence unlike the case of subsonic waves no neutral waves are possible. Further it is 
easy to show that for certain wavelengths a pressure imbalance which is in phase 
with the vortex-sheet displacement is possible. The net result is that with the 
internal Mach wave system a highly supersonic jet can sustain a family of instability 
waves with supersonic phase velocities. With supersonic phase velocity relative to 
the ambient gas the instability wave will generate a Mach-wave-like near field as 
discussed by Tam (1971) and Chan & Westley (1973). In  a later section of this paper 
is will be shown that the calculated phase velocities of these waves are in agreement 
with the measured phase velocities of Oertel’s second family of waves. Because of 
their supersonic phase velocities these waves will be called the supersonic instability 
waves. 

In a study of the instabilities of top-hat profile jets Gill (1965) appeared to be the 
first to notice that there were instability wave modes other than the well-known 
Kelvin-Helmholtz instability wave. Gill reasoned that these additional waves were 
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resonances and referred to them as reflection modes. He suggested that these 
resonances arose when sound waves impinged on the vortex sheet a t  certain critical 
angles. The impingement caused the release of a large amount of energy from the thin 
shear layer. Presumably, although it was never elaborated by him, the released 
energy increased the amplitude of the acoustic waves and hence led to  instabilities. 
Recently, motivated by possible application to jet-like galactic structures, Ferrari, 
Trussoni & Zaninetti (1981), Cohn (1983), Payne & Cohn (1984) and Zaninetti (1986, 
1987), following the suggestion of Gill, investigated the ‘reflection modes’ of very 
high-speed jets. Their studies were unfortunately somewhat restricted and except for 
Payne & Cohn focused primarily on temporal instabilities. It is to be noted that in 
Oertel’s experiments the observed instabilities were spatial instability waves. In 
addition, their calculated results also appeared to  be quite fragmentary, and confined 
essentially to vortex-sheet jets. No distinctions between subsonic and supersonic 
instability waves were made so that it would not be possible through thcsc works to 
deduce that high-speed jets can support three distinct families of instabilities. 
Recently it was found that the Mach wave mechanism which gave rise to supersonic 
instability waves in a jet also produced similar instabilities in the case of a plane 
shear layer enclosed inside a rectangular channel. Extra complications, however, 
arise from coupling to  the intrinsic neutral acoustic modes of the channel. This 
problem has now been studied and clarified by the present authors (Tam & Hu 1988). 

In  this paper it will be shown that high-speed jets are subjected to three families 
of instabilities. One of these is the familiar Kelvin-Helmholtz instability waves. Thc 
other two are generated by the presence of a Mach wave system inide thc jct. In  jets 
with infinitesimally thin mixing layers the subsonic waves are neutrally stable. These 
wavcs are unstable only if a finite-thickness shear layer is included in the 
mathematical model. The wave patterns associated with the spatial instabilities of 
the three families of waves will be analysed and compared with experimcntal 
observations. It will also be shown that a t  sufficiently high Mach number the growth 
rate of the Kelvin-Helmholtz instability decreases drastically. At still higher Mach 
number this wave mode would merge with the supersonic instability waves. When 
this happens the Kelvin-Helmholtz mode can no longer be readily identified. Other 
important characteristics of the three families of instability waves will be reported 
in $53-7 of this paper. 

2. The three families of instability waves of high-speed jets 
In  the past numerous studies of the Kelvin-Helmholtz instability waves of 

compressible jets have been carried out. References to some of the more recent works 
can be found in Michalke (1984), Tam & Burton (1984), Zaninetti (1986, 1987) 
and others. Most of these investigations, however, focused primarily on the 
Kelvin-Helmholtz instability in subsonic and low supersonic jets. Here our principal 
interest is on the other two families of instability waves of high-speed jets observed 
by Oertel (1979, 1980, 1982). In this work a vortex-sheet jet model as well as a more 
realistic jet model with continuous velocity profile and finite shear-layer thickness 
will be used. Experience indicates that  the simpler vortex-sheet model can usually 
provide reasonably good estimates of the phase velocity of an instability wave. But 
for the purpose of calculating accurately the growth rate of the wave, a finite- 
thickness jet model is necessary. I n  later sections of this paper it will be shown that 
if the vortex-sheet model of a supersonic jet is used the growth rates of subsonic 
waves are found to be zero, i.e. they are neutral waves. On the other hand, 
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FIQURE 5. Perturbed motion of a round jet bounded by a vortex sheet. 

calculations based on the more realistic finite mixing-layer thickness model reveal 
that these are unstable waves with finite spatial growth rates. For this reason, all the 
three families of waves will be referred to as unstable waves even in the context of 
the vortex-sheet jet model. 

2.1. Vortex-sheet model of high-speed jets 
Consider a supersonic jet of velocity uj and radius Rj  bounded by a vortex sheet as 
shown in figure 5 .  Let ( r ,  8, x) be a cylindrical coordinate system centred at  the axis 
of the jet with the x-axis pointing in the direction of the flow. On starting from the 
linearized continuity, momentum and energy equations of a compressible inviscid 
fluid, it is straightforward to find that the pressure associated with small-amplitude 
disturbances superimposed on the mean flow inside and outside the jet, pi and p,, are 
governed by the wave and convective wave equation respectively. 

(2.1) 
~- a2Po 

at2 aEV2po = 0 ( r  2 Rj), 

(;+”‘;yPi+2pi = 0 ( r  <Rj) ,  

where a, and uj (subscripts o and j denote physical quantities outside and inside the 
jet) are the speeds of sound outside and inside the jet. Let c(8,z,t) be the radial 
displacement of the vortex sheet. The dynamic and kinematic boundary conditions 
at  the vortex sheet r = Rj are 

pi=p, ,  ---=- c. (2.3, 2.4, 2.5) 
po ar at2 ’ pj ar ax 

It is straightforward to find that separable solutions of the above equations and 
boundary conditions which also satisfy the boundedness condition at r = 0 and 

where qo = (Ic2-02/a$, qi = ((w--uj k)2/a3-k2)f .  The branch cuts of qo and qi are 
taken to be 

The wavenumber and angular frequency k and w are related by the eigenvalue 
relation 

-in < argy, < i n ,  0 < argqi < .n. 

(’ = derivative). 
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Equation (2.7) is not new (see e.g. Tam 1971 ; Chan & Westley 1973). Solutions of 
(2.7) or the roots of D(w,  k) are the wave modes of the jet. The nature of these wave 
modes will be discussed in subsequent sections of this paper. 

2.2. Finite-thickness shear-layer model 
In a real jet the mean velocity and density profiles are continuous. Experimentally 
it has been found that the flow velocity is uniform in the central part of the jet. 
Surrounding this uniform core is a mixing layer with a velocity profile which can be 
closely approximated by a half-Gaussian function, see e.g. Troutt & McLaughlin 
(1982). Thus the mean velocity profile in the core region of the jet will be taken 
as 

in the present calculation. In  (2.8) h is the radius of the uniform core and b is the half- 
width of the jet mixing layer. The parameters h and b are related by the condition of 
conservation of momentum flux 

r m  

p.ii2r dr = ip j  uf Rf . J, 
The mean density j i  is related to  the mean velocity ti by the Crocco's relation (Prandtl 
number is assumed to be unity). 

It is easy to show starting from the linearized equations of motion for an inviscid, 
non-conducting compressible fluid that the equation governing the perturbation 
pressure p is (scc e.g. Tam & Burton 1984) 

p ( r ,  0, x, t )  = $(r)  exp [i(kx+nO-wt)], (2.10) 

n2 ] 
k2 1; = 0, (2.11) 

r2 

where a = (yp,/ji)t. The locally parallel flow approximation has been invoked in 
deriving (2.11). This equation together with the boundedness condition at r = 0 and 
r +  00 form an eigenvalue problem for w = o ( k )  or k = k ( w ) .  The eigenvalue can be 
determined by integrating this equation numerically. Details of the numerical 
procedure may be found in Tam & Burton (1984) and will not be elaborated here. To 
initiate the iteration cycle of the numerical procedure the solution of the vortex-sheet 
jet model has been used throughout this paper. 

2.3. Existence of three families of wave solutions 
The branch points of the function ir, and qi of (2.7) for a given real value of k in the 
complex w-plane are, 

respectively. The branch cuts of these functions are shown in figure 6. The 
significance of the branch points is that regions of the complex w-plane to the left- 
hand branch point represents waves for which the flow has supersonic convective 
Mach number. Convective Mach number is defined as the Mach number of the flow 
measured in the moving frame of the wave. It is straightforward to  show that for 
every point in this region of figure 6 ( b )  the supersonic convective Mach number 
relationship uj-w,/k > aj holds (w = w,+io,), where subscripts r and i denote real 

w = f ka,, w = kaj(uj/aj f l) ,  (2.12) 
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FIGURE 6. Branch cuts of (a )  iTo and ( b )  vi in the complex w-plane for a supersonic jet. Shaded 
areas are regions with supersonic convective Mach number. 

and imaginary parts. Similarly for every point to the left of the left-hand branch 
point of iq, in figure 6(a )  which is for the static environment outside the jet the 
inequality lo,/kl > a, applies. 

It is also easy to  show that points in the region of the complex o-plane to  the right 
of the right-hand branch points in figure 6 again represent waves for which the 
convective Mach number of the flow is supersonic. In this case the inequalities 
are, 

ur/k-uj > aj, u, /k  > a,, 

inside and outside the jet respectively. The remaining region of the complex w-plane, 
namely, the vertical strip between the two branch points represents waves having 
subsonic convective Mach numbers. 

According to the instability mechanism described in the previous section, 
supersonic instability waves exist in a jet only if the convective Mach numbers (for 
the flow inside and outside the jet) are supersonic. In terms of the complex w-plane 
this is possible only if the jet Mach number is highly supersonic such that the left- 
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FIGURE 7 .  Zeros of the dispersion function D(w, k) in the complex w-plane. M, = 4.0, cold jet ,  
kR, = 15.0, TL = 0 mode. -, Re (D) = 0;  ---, Im (D) = 0. T, right-hand branch point of' iqo, $, 
left-hand branch point of qi. A, Kelvin-Helmholtz instability ; 0 ,  supersonic instabilities ; 1, 
subsonic wave modes. 

hand branch point of figure 6(b) lies to the right of the right-hand branch point of 
figure 6 ( a ) ,  I n  other words, 

uj > aj+a,. (2.13) 

The vertical strip between the two branch points satisfies the supersonic convective 
Mach numbers criterion. 

Now for a vortex-sheet supersonic jet the instability wave modes are given by the 
zeros of the dispersion function, D(w, k), of (2.7). To locate the zeros in the complex 
w-plane for a given value of k, the following grid-search method has been found 
useful. To implement this method the region of interest in the w-plane is first 
subdivided into small subregions by a rectangular grid. The value of the dispersion 
function D(w,k )  of equation (2.7) are calculated at each grid point. A plotting 
subroutine is then called which performs a two-dimensional interpolation of this set 
of values and constructs the two families of curves Re ( D )  = 0 and Im (D) = 0. The 
intersection of these curves provide a first estimate of the locations of the zeros of D. 
These values are then refined by applying Newton's iteration method. 

Figure 7 shows a typical example of the zeros of the dispersion function D(w, k )  
found by the grid-search method for a highly supersonic jet. I n  this example the 
axisymmetric waves (n = 0) of a Mach number 4.0 cold jet are considered. The 
wavenumber kRj, has been set to be equal to  15.0 in the calculation. It is evident in 
this figure that there are three families of zeros, or wave modes. The isolated zero 
with the largest temporal growth rate is the familiar Kelvin-Helmholtz instability. 
Immediately below the Kelvin-Helmholtz zero is a family of zeros lying in the 
vertical strip (with Im ( w )  > 0) between the right-hand branch point of iq, and the 
left-hand branch point of T ~ .  These are the supersonic instability waves. To the left 
of the supersonic instability waves is another family of zeros. These zeros lie on the 
real w-axis between the two branch points w l k  = fa,. These waves, therefore, have 
subsonic phase velocity relative to the ambient speed of sound. They are the subsonic 
waves. For non-axisymmetric wave modes with n = 1,2,3,  . . . , maps similar to figure 
7 have been constructed by the grid-search method. Again they exhibit three sets of 
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wave modes resembling those in figure 7. The above results apply to hot jets as well. 
For hot jets the supersonic instability wave modes exist even a t  much lower 
supersonic Mach number. When condition (2.13) is not satisfied, only the 
Kelvin-Helmholtz and the subsonic waves could be found. Experimentally Oertel 
(1979, 1980, 1982) found that his second set of waves (the W waves) exist only when 
uj > aj  + a,, independent of Mach number and the type of gas used to form the jet. 
This is in total agreement with condition (2.13). Further comparisons between 
computed wave characteristics and experimental measurements of the three families 
of waves of high-speed jets will be reported later. 

2.4. Relationship between Kelvin-Helmholtz instability and supersonic instability 
waves at high-jet Mach number 

It has been known since the early work of Miles (1958) that  the growth rate of the 
Kelvin-Helmholtz instability decreases as the flow Mach number increases. Thus at  
higher jet Mach number one would expect the Kelvin-Helmholtz zero in figure 7 
to move towards the real o-axis. However, between the real o-axis and the 
Kelvin-Helmholtz zero are the supersonic instability wave modes. An interesting 
question, therefore, arises as to whether the Kelvin-Helmholtz zero would pass 
through the supersonic instability wave modes to reach the w-axis. To answer this 
question a series of maps similar to figure 7 has been calculated with a fixed 
wavenumber but increasing jet Mach number. Attention is focused on the trajectory 
of the Kelvin-Helmholtz zero in the complex o-plane as the jet Mach number 
increases. It is found that when the Mach number reaches a certain critical value the 
Kelvin-Helmholtz zero blends itself into the supersonic instability wave modes. At 
still higher jet Mach number the Kelvin-Helmholtz mode seems to lose its identity 
and cannot be readily singled out. The wave mode merging phenomenon is illustrated 
in figure 8. In this example the calculations are for the axisymmetric mode (n  = 0) 
and kR, = 15.0. Figure 8 ( a )  shows the curves Re (D) = 0 and Im (D) = 0 in the 
complex w-plane at jet Mach number 4.4. The zero of D ( w , k )  with the largest 
imaginary part is the Kelvin-Helmholtz mode. Figure 8 ( b )  shows a similar map a t  
jet Mach number 4.6. Now as Mach number increases from 4.4 to 4.6 drastic changes 
of the curves Re (D) = 0 and Im (0) = 0 take place around 4.5. As a result it  is no 
longer possible to single out readily which is the Kelvin-Helmholtz mode in figure 
8 (b). Figure 8 (c) gives the locations of the supersonic instability wave modes at  Mach 
number 5.0. No trace of a distinct Kelvin-Helmholtz mode can be found. In  other 
words, the merging of the Kelvin-Helmholtz mode with the supersonic instability 
wave modes is complete. An examination of the eigenfunctions of the wave modes 
seems to reinforce this conclusion. At Mach number above a critical value all the 
eigenfunctions exhibit similar characteristics whereas a t  lower Mach numbers the 
eigenfunction of the Kelvin-Helmholtz wave is distinctly different from those of the 
supersonic instability waves. Typical eigenfunction distribution will be provided 
later. 

Extensive numerical computations indicate that the critical Mach number, M,, 
above which the Kelvin-Helmholtz mode blends itself completely with the supersonic 
instability wave modes is insensitive to the azimuthal wavenumber n and the axial 
wavenumber k. (Note: M ,  does not have a sharply defined value but can be narrowed 
down to a very narrow range.) It turns out that M ,  is affected mainly by the jet 
temperature. Figure 9 shows the dependence of M ,  on the jet to ambient temperature 
ratio. In constructing this graph the ratios of the specific heats of the gases inside and 
outside the jet have been assumed to be the same. As can be seen M ,  decreases with 
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FIGURE 8. Location of the zeros of U in the complex w-plane. Cold jet, kRj = 15.0. -, Re (D)  = 
0: ---, Tm (D) = 0. 0,  supersonic instability wave; A, Kelvin-Helmholtz instability wave; m, 
subsonic wave. (a )  M j  = 4.4. (6) M, = 4.6. ( c )  N, = 5.0.  
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FIGURE 9. Critical Mach number above which the Kelvin-Helmholtz instability wave can no 
longer be identified as a function of jet to ambient temperature ratio (q/q). 

an increase in jet temperature. It appears that the curve tends to an asymptote as 
the temperature ratio becomes very large. 

3. Spatial instability 
In this work the primary interest is the spatial instability wave modes. These, 

rather than the temporal instabilities, are the waves observed in Oertel’s (1979,1980, 
1982) experiments. For spatial instability waves w is real. However, it is known that 
in det,ermining these waves it is not sufficient to set w to a real number and look for 
the zeros or poles of D(w, k) in the complex k-plane. One must recognize that waves 
can propagate in the positive or negative x-direction. Such a distinction is absolutely 
necessary. Failure to do so may erroneously treat an evanescent wave as a spatially 
amplifying wave and vice versa. Here the criterion for distinguishing between an 
evanescent and a spatially amplifying wave established by Briggs (1964) will be 
followed. According to Briggs, if one is interested in spatial instability waves of 
frequency 52 one should start calculating the roots of the dispersion function by 
setting the real part of w equal to 52 and the imaginary part of w to be a large positive 
value. Zeros of D(w, k) lying in the upper half k-plane represent waves propagating 
in the positive x-direction while those in the lower half k-plane represent waves 
propagating in the negative x-direction. Figure 10 shows a typical example. Here the 
calculation is for a cold jet of Mach number 4.0 with wRj/uj = 2.6+ 1.5i. The zeros 
of D(w, k) in the k-plane are located by the grid-search procedure described above. In 
figure 10 these zeros are denoted by open circles. Also shown in this figure are the 
branch cuts of yo and qi denoted by double thin lines. The branch points of yo and 
qi in the complex k-plane are f w / a o  and w / ( u j  +aj)  respectively. Now to obtain the 
normal mode solutions the point w must be pushed towards the real axis. Here real 
w is kept fixed in the complex w-plane throughout the entire contour deformation 
process. Numerically this is carried out by reducing the imaginary part of w by small 
increments until it is equal to zero (solid circles). For each intermediate value of w 
the grid-search procedure is implemented. In this way the movement of all the zeros 
ofD(w, k) can be traced as Im ( w )  + O+. The trajectories of the zeros are shown in figure 
10. The final locations of the zeros, i.e. when w is real, are denoted by solid circles and 
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FIGURE 10. Trajectories of the zeros of D ( w , k )  in the complex k-plane as I m ( u ) + 0 +  showing 
the Kelvin-Helmholtz instability wave ( A ) . ,  the supersonic instability waves (B) ,  and the subsonic 
waves (C). Cold jet, Mach number 4.0, n = 0. 

the branch cuts by solid black lines. Some of the zeros in the vertical strip between 
the right-hand branch points of qi and v0 crossed into the lower half k-plane as w is 
pushed toward the real axis. These are the spatial supersonic instability wave modes. 
The isolated zero of D(w,  k)  with the largest negative imaginary part which crosses 
into the lower half k-plane is the Kelvin-Helmholtz instability wave. In addition to 
the supersonic instablity wave modes and the Kelvin-Helmholtz mode there are two 
families of zeros lying on the real k-axis; one to the left-hand branch point of yo and 
the other to the right of the right-hand branch point of qo. They are the subsonic wave 
modes. Some zeros remain in the upper half k-plane and some in the lower half plane. 
They represent spatially evanescent waves. It is to be noted that all the zeros of the 
dispersion function which originate from the upper half k-plane represent waves 
propagating in the downstream direction whereas those which originate from the 
lower half plane represent waves propagating in the upstream direction. When 
condition (2.13) is not satisfied, as in the case of a cold jet at 1.5 Mach number, there 
is no supersonic instability wave mode. I n  this case the trajectories of the zeros of 
D(w, k)  are shown in figure 11.  In this figure only the zero ofD(w, k) corresponding to 
the Kelvin-Helmholtz instability wave crosses the real k-axis into the lower half 
plane. The subsonic wave zeros can be found along the real k-axis. But there is 
definitely no supersonic instability zero. 

3.1. Relationship between subsonic and supersonic wave modes 
I n  the previous section it was demonstrated that the Kelvin-Helmholtz instability 

wave is related to  the supersonic instability waves. At high-jet Mach numbers the 
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FIGURE 1 1 .  Trajectories of the zeros of D(w, k) in the complex k-plane as Im ( w )  + 0+ showing the 
Kelvin-Helmholtz instability wave (A )  and the subsonic waves (G). Cold jet, Mach number 1.5, 
n = 0. 
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FIGUBE 12. Dispersion relations, Re@) as a function of o, ---, of the Kelvin-Helmholtz 
instability wave; -, the supersonic instability waves; ----, The subsonic waves; and -, 
the upstream propagating subsonic waves. Cold jet, jet Mach number 4.0, n = 0. 

two sets of waves merge to form a single family. It turns out that the subsonic and 
supersonic waves, although seemingly different in that the former are neutral waves 
(in the context of the vortex-sheet model) while the latter are unstable waves, are 
also related. A clue to their relationship may be found in figure 10. For Im ( w )  large 
and positive the zeros of the supersonic instability waves and the subsonic waves 
form a family of zeros located near the right-hand branch cut of qi. A more direct way 
of seeing that the two famlies of waves are related is to examine their dispersion 
relations. Figure 12 shows the relationship k,(w),  where k, is the real part of the axial 
wavenumber k, of the Kelvin-Helmholtz instability, the supersonic instability waves 
and the subsonic waves for a cold jet a t  Mach number 4.0. It is readily seen that the 
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FIGURE 13. Dispersion relations, k,(o) ,  of ---, the Kelvin-Helmholtz instabiky wave; -.-. , 
the subsonic waves; -, and the upstream propagating subsonic waves. Cold jet, Mach number 
1.5, 11 = 0. 

dispersion relations of the subsonic waves with positive k, continue into the 
dispersion relations of the superonic instability waves. Thus they may technically be 
regarded as a single wave family exhibiting different characteristics in subsonic and 
supersonic convective Mach numbers. 

At lower jet Mach number when condition (2.13) is not satisfied the supersonic 
instability waves do not exist. Figure 13 shows typical dispersion relations of the 
subsonic waves and the Kelvin-Helmholtz instability waves in this case. It is to be 
noted that the real part of the axial wavenumber, k,, of the supersonic instability 
wave as well as that of the Kelvin-Helmholtz instability wave are smaller than those 
of the subsonic waves. This is evident in figure 10. This implies that the subsonic 
waves have the slowest phase velocities of the three families of waves. This result is 
cwnsistent with the measurements of Oertel (1980). 

3.2. Upstream propagating waves of supersonic jets 
In a supersonic flow all small-amplitude disturbances propagate downstream. It is, 
therefore, natural to expect the intrinsic wave modes of a supersonic jet to propagate 
in the downstream direction. However, according to dispersion relation (2.7) a 
supersonic jet can support neutral upstream propagating wave modes. This finding 
is surprising but not unphysical. Outside the jet the ambient gas is stationary so i t  
is possible for wavcs to propagate upstream but still be attached to the jet. The 
upstream propagating neutral waves, however, do not exist for all frequencies. Their 
existence is confined to very narrow frequency bands. 
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FIGURE 14. Trajectories of the zeros of D(w, k) in the complex k-plane as Im ( w )  +O+ showing the 
upstream propagating subsonic wave marked by ‘X’. Cold jet, Mach number 1.5, n = 0. 

Experimentally it is known that supersonic jets operating a t  off-design condition 
normally would exhibit the phenomenon of screech during which strong discrete 
frequency sound waves are emitted. The screech is produced by a feedback loop (see 
Powell 1953; Davies & Oldfield 1962; Tam, Seiner & Yu 1986). Part of the feedback 
loop consists of strong acoustic disturbances propagating upstream immediately 
outside the jet toward the nozzle exit. It is not clear a t  this time whether these 
feedback acoustic disturbances of jet screechl are associated with the upstream 
propagating wave modes found in this study or not. 

To show the existence of upstream propagating wave modes for supersonic jets 
consider the trajectories of the zeros of the dispersion function D(w, k) of (2.7) in the 
complex k-plane as shown in figure 14. I n  this figure the calculations are for a cold 
Mach 1.5 supersonic jet with Re (wRj/uj) = 3.45. The trajectories are formed as w is 
pushed from Im (wRj/uj) = 0.2 to the real axis in the o-plane according to Briggs’ 
(1964) contour deformation criterion. As can be seen the trajectory X of the zero of 
D(w,  k )  which begins in the lower half k-plane ultimately reaches the real k-axis when 
Im ( w )  +Of .  Since this zero comes from the lower half plane it represents an upstream 
propagating neutral wave. Extensive numerical computation reveals that this zero 
reaches the real k-axis only for a narrow range of frequencies. At slightly higher 
frequencies this zero comes close to  the real k-axis but remains in the lower half 
plane so that i t  is an upstream propagating evanescent wave. The spatial damping 
rate increases rapidly with frequency. Typical dispersion relations of the upstream 
propagating subsonic wave modes are shown in figure 13. The group velocity, 
awlak,, is close to --a,,; a,, is the ambient speed of sound. Hence in the (k,, @)-plane the 
dispersion relations of these waves lie very close to the straightline w / k ,  = -a,. 
Typical eigenfunctions of these waves will be given later. 

3.3. Wave pattern 
One way to identify the waves of high-speed jets predicted by the vortex-sheet or the 
finite shear-layer thickness jet models of $2 with those observed experimentally by 
Oertel(1980) is to compare the calculated and measured wave patterns. Consider the 
first two families of unstable waves, namely, the Kelvin-Helmholtz instability wave 
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FIGURE 15. Lines of constant phase in the near field of a supersonic jet associated with the 
Kelvin-Helmholtz or supersonic instability waves. 

and the supersonic instability waves. Outside the jet ( r  > R,) the eigenfunction is 
given by (2.6) or 

where A is an arbitrary constant. For high-frequency waves, the wavelength is small 
compared to the diameter of the jet so that the argument of the Hankel function in 
(3.1) is large. It is, therefore, permissible to replace the Hankel function by its 
asymptotic form to obtain 

p,(r, 8, x, t )  = AHF)(ivor) ei(kz+ne-d), (3.1) 

Here k and yo are complex. Let 

k = k, + ik,, yo = q, + iy,. (3.3) 

Substitution of (3.3) into (3.2) leads to the following formula for p,.  

Consider a plane, 0 = constant, which passes through the centreline of the jet. 
According to (3.4) on such a plane the curves of constant phase are straight lines. The 
equation of these lines is 

(3.5) kr x - qoi r - ot = constant. 

This represents a set of parallel straight lines. These straight lines make an angle $ 
with the boundary of the jet as shown in figure 15. The angle $ is equal to 

9 = tan-' [$I. (3.6) 

The wave pattern of figure 15 is the same as the wave pattern of the first set of waves 
in figure 1. In $4, (3.6) will be used to calculate the angle $ for the Kelvin-Helmholtz 
instability waves over a wide range of jet Mach number. There it will be shown that 
the calculated angles compared very favourably with experiments. 

For supersonic instability waves the spatial growth rate is small. As a result yo, is 
fairly small compared to k,. + as computed by (3.6) is, therefore, very close to 90". 
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FIG~JRE 16. Lines of constant phase forming a cross-hatched pattern inside a supersonic jet 
associated with the subsonic waves. 

This is consistent with the wavefront angle of the second set of waves shown in figure 
1.  

In  the case of the neutral subsonic waves qo is real. Outside the jet the pressure 
distribution is given by 

It is readily seen from (3.7) that  the pressure distribution decays exponentially 
outward in the near field in all directions. I n  other words, the predicted wave pattern 
is confined inside the jet. This absence of a near-field wave pattern is the same as that 
of the third set of waves of figure 1 .  

Inside the jet pressure eigenfunction of the subsonic waves is given by (2.6). That 
is 

For high-frequency waves I?lilr is large except near the jet axis. Under this 
circumstances one may again replace the Bessel function in (3.8) by its asymptotic 
form, hence 

pi(r, 8,z , t )  - J, (q ir )exp[ i (kz+n8-wt) ] .  (3.8) 

constant 
pi(r, 6, X, t )  - cos (ri r -+(n +a) n) exp (i(kx+nO- wt))  

(Tir)' 
constant 

N [exp (i(qi r + kx + no- wt -a(. +$) n))  
(Ti 

+ exp (i( - yi r + kz  + no - wt + a(n + +n))]. (3.9) 

Now according to (3.9) the wave pattern in the plane 8 = constant consists of two sets 
of propagating waves with curves of constant phase again in the form of parallel 
straight lines. The equations of the two families of straight lines are 

vi r + kx - wt = constant, (3.10) 

and - T~ r + kx - wt = constant. (3.11) 

These two sets of parallel straight lines form a cross-hatched pattern inside the 
supersonic jet as shown in figure 16. The angle @ between the straight lines and the 
jet boundary is given by 

+ = tan-1 [t] = sin-' [A], (3.12) 

where ceP = w / k  is the phase velocity of the waves. This wave pattern is identical to 
that of the third set of waves observed by Oertel(l980) and labelled as the W" waves 
in figure 1. 

Uj-cCph 
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FIQURE 17. Comparison between calculated and measured dispersion relation of the Kelvin- 
Helmholtz instability wave in a cold 2.1 Mach number jet (n = 1). -, calculated; 0.  
experiment of Troutt & McLaughlin (1982). 

The identification of the wave patterns of the three sets of waves observed by 
Oertel as the Kelvin-Helmholtz instability wave, the supersonic instability waves 
and the subsonic waves found in the present analysis is now complete. In  the 
following sections special characteristics of each set of waves will be discussed. 
Comparisons with experiments will be made whenever possible. 

4. Wave pattern and other characteristics of Kelvin-Helmholtz instability 
The Kelvin-Helmholtz instability wave has been studied by numerous investi- 

gators before. Michalke (1984) has provided an excellent review of this instability 
in subsonic jets. Here only the important features of this instability wave in 
supersonic jets will be presented. Emphasis will be on comparisons with experiments. 
Some of the characteristic features of the Kelvin-Helmholtz waves will also be 
described. This is for the purpose of providing a basis for comparison with the 
supersonic instability waves in the next section. 

Measurements of pressure and velocity disturbances in supersonic flows are 
difficult to perform. As a result there is only a limited number of experiments on 
Kelvin-Helmholtz instability waves in supersonic jets. By comparing the calculated 
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FIGURE 18. Comparison between calculated and measured wave speed of the Kelvin-Helmholtz 
instability wave in a cold 2.1 Mach number jet (n = 1).  -, calculated; 0, experiment of Troutt 
& McLaughlin (1982). 
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FIGURE 19. Comparison between calculated and observed angle of the wavefronts of the 
Kelvin-Helmholtz instability waves outside a supersonic nitrogen jet. -, calculation (high 
frequency) ; experiment : 0 ,  Rosales (1970) ; m, Lowson & Ollerhead ( 1  968). 

results with these measurements it appears that linear stability theory can provide 
reasonably good estimates of the wave speed and near-field pattern. However, the 
calculated growth rate is quite inaccurate. This situation is similar to that for 
subsonic jets as reported by Moore (1977) and others. Figure 17 shows the calculated 
dispersion relation of the Kelvin-Helmholtz instability wave (equation (2.7)) for a 
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FIGURE 20. Comparison between calculated and observed angle of the wavefronts of the 
Kelvin-Helmholtz instability waves outside a supersonic helium jet. --, calculation (high 
frequency); 0, experiment of Rosales (1970). 
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FIGURE 21. Pressure eigenfunction distribution of the Kelvin-Helmholtz instability waves. 
Mach 1.6 cold jet, axisymmetric mode (n = 0). (a) wRj/uo = 11.0, (b) 5.0. 

2.1 Mach number cold jet for the n = 1 wave mode. Plotted in this figure also are the 
measurements of Troutt & McLaughlin (1982). Figure 18 shows a comparison of the 
calculated and measured wave speed over the Strouhal number range of 0.1-0.9. As 
can be seen there is good agreement between theory and experiment over nearly the 
whole range of Strouhal number. 

Prior to the work of Oertel (1979), Lowson & Ollerhcad (1968) and Rosales (1970) 
had carried out extensive observations of the near-field wave pattern of the 
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Kelvin-Helmholtz instability waves in supersonic jets. These data can now be used 
to compare with the calculated wave pattern discussed in $3.3. Figure 19 shows the 
observed wave-front angle of cold supersonic nitrogen jets as a function of jet Mach 
number. The full curve in this figure is the calculated angle based on (3.6) a t  high 
frequency. The agreement with measurements is excellent. The difference between 
theoretical values and measurements is well within expected experimental un- 
certainty. Figure 20 is a similar comparison between calculated and observed wave- 
front angles for supersonic helium jets. Because of the not insignificant difference in 
the ratio of specific heats of the gas inside and outside the jet the wave-front angle 
reduces greatly from figure 19 to figure 20. This is correctly calculated by (3.6). The 
good agreements found between theory and experiment tend to reinforce the belief 
that  the near wave field of the first set of waves observed by Oertel (1980) is indeed 
associated with the Kelvin-Helmholtz instability wave. 

Figure 21 shows the pressure eigenfunction associated with the Kelvin-Helmholtz 
instability wave in a cold Mach number 1.6 supersonic jet. It is evident from this 
figure that the pressure fluctuations are confined to the region immediately adjacent 
to the shear layer of the jet. There is very little pressure fluctuation near the jet 
centreline. The instability wave distribution is similar to that of a plane two- 
dimensional shear layer. The axisymmetric geometry of the jet mixing layer seems 
to  be unimportant. This is in sharp contrast to the supersonic instability waves which 
owe their existence to nearly complete reflection of acoustic disturbances at  the shear 
layer of the jet. 

5. Characteristics of supersonic instability waves 
As discussed in $ 1 ,  supersonic instability waves are sustained by continuous 

reflection of acoustic disturbances at the mixing layer of the jet. The entire wave 
family consists of infinitely many modes. These wave modes can be classified by 
designating each mode by two integer numbers (n, m).  The n number is the azimuthal 
mode number from the exp ( i d )  (n  = 0 , 1 , 2 ,  ...) dependence of the wave solution. 
The m number (m = 1 ,2 ,3 ,  ...) is the radial mode number characterizing the number 
of anti-nodes (maximum oscillation points) of the presure distribution of the wave 
in the radial direction. As an illustration figures 22 and 23 show the pressure 
eigenfunction distribution of the (0, l),  (0,2), (0,3), (1 ,  l ) ,  (1,2) and (1,3) supersonic 
instability wave modes of a cold Mach number 3.0 jet. The number of antinodes is 
well defined so that the m number assigned to a mode is unambiguous. For all 
axisymmetric modes (n = 0) the first antinode is located a t  the centre of the jet, On 
the other hand for the higher-order modes (n = 1 , 2 , 3 , .  ..) the centre of the jet is a 
node as shown in figure 23. It is interesting to compare the pressure eigenfunctions of 
figures 22 and 23 with those of the Kelvin-Helmholtz instability wave shown in 
figure 21. The antinodes and quasi-nodes (minimum oscillation points) of the 
eigenfunctions of supersonic instability waves are characteristics of waves generated 
by continuous reflection. There are no such features in the eigenfunctions of the 
Kelvin-Helmholtz instability waves. The distinct differences between figures 21 and 
22 or 23 reflect simply the different physical mechanisms which drive these two 
familes of instabilities. 

Typical dispersion relations, Re (k) as a function of w ,  of the supersonic instability 
waves are shown in figure 12. Once the dispersion relation of a wave mode is known 
the phase velocity cph = @/Re (k) can easily be determined. The spatial growth rate 
of a supersonic instability wave varies with the frequency of the wave. Figure 24 
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FIGURE 22. Pressure eigenfunction distributions of supersonic instability waves. Cold jet, Mach 
number 3.0. -, (0 , i )  mode; ---, (0,2) mode; -.-.- , (0,3) mode; - x - x -, (0,4) mode. 
(a)  wRj/a0 = 16.0, ( b )  8.5, (c) 2.0. 
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FIQURE 23. Pressure eigenfunction distributions of supersonic instability waves. Cold jet, Mach 
number 3.0. -, ( 1 , l )  mode; ---, (1,2) mode; -.-.-, (1,3) mode. (a) &,/a, = 16.1, ( b )  10.1, 
( e )  3.0. 

provides the spatial growth rates of the first six axisymmetric modes (n = 0, m = 1, 
2 ,3 ,  . . . ,6) of a cold Mach number 4.0. These waves are typical of the entire family of 
supersonic instability waves. Each wave mode is unstable over a certain frequency 
band and attains maximum growth rate a t  a particular frequency. In figure 24 the 
most unstable frequencies for the first five radial modes, i.e. m = 1,2,3,4,5,  are 
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FIQURE 24. Spatial growth rate of supersonic instability waves. Cold jet, Mach number 4.0, 

axisymmetric mode (n = 0). 0, maximum growth rate of the wave mode. 
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FIGURE 25. Phase 
axisymmetric mode (n = 0). 0, wave with maximum spatial growth rate; ---, most probable 
wave speed. 

velocities of supersonic instabilty waves. Cold jet, Mach number 4.0, 

denoted by a circle. The phase velocities corresponding to the waves of figure 24 are 
shown in figure 25 as functions of wRj/ao. The phase speeds of the wave of each mode 
with maximum spatial growth rates are indicated by circles. It is important to 
observe that the phase velocities of the most amplified wave of various modes are 
nearly equal. The averaged numerical value is indicated by the dotted line in the 
figure. Since this is the phase velocity of the most amplified wave it is, therefore, the 
most likely observed wave speed. As suggested by figure 25 this wave speed is largely 
independent of frequency, jet radius and radial mode number m. It turns out that 
it is also independent of the azimuthal mode number n and jet Mach number. 
Extensive numerical computations have been carried out to determine the parameter 
which would correlate with this calculated most probabie wave speed. It has been 
found that this wave speed is a function of jet to ambient speed of sound. The 
parameter which correlates with all the computed results is (1  + aj/a0)-l ; assuming 
that the specific heat ratios inside and outside the jet are the same. Figure 26 shows 
that the calculated most probable wave speed of the supersonic instability waves is 
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FIGURE 26. Correlation of the phase velocity of supersonic instability wave at maximum 
spatial growth rate with the parameter [ l  +a,/a,]-'. 0 ,  n = 0;  x . n = 1 ; n, n = 2 (yJ = yo). 

directly proportional to this parameter. Since the computed points lie almost exactly 
on the 45' line it is concluded that the most likely observed phase velocity, cph, of the 
supersonic instability waves is given by the formula 

C & =  
uj 1 + U j / U 0 '  

Equation (5.1) is identical to  an empirical formula derived by Oertel(1980) based on 
his extensive experimental measurements. It correlates a large body of his measured 
data. The perfect agreement between calculated results and experiments leaves little 
room for doubt that the second set of waves (see figure 1) observed by Oertel are, 
indeed, the supersonic instability waves. It is worth mentioning that Papamoschou 
& Roshko (1986) in their study of large turbulence structures in high-speed two- 
dimensional shear layers derived an equation identical to (5.1) using simple quasi- 
steady flow argument. It appears, therefore, that (5.1) might be applicable even to 
disturbances of moderately large amplitude. 

Equation (5.1) is independent of the radius of the jet. By using this information i t  
is possible to derive this equation from the dispersion relation (2.7).  Since the most 
probable wave speed is independent of jet radius Rj, one can let Rj k+ co in (2 .7) .  In 
this limit the entire family of the supesoaic inst,ability waves reduces to  a single 
neutral wave. If the ratio of the specific heats of the gas of the jet, y j ,  differs only 
slightly from that of the ambient gas, yo, i.e. (yj/y,,- 1) 4 1 then it is straight,forward 
to show that the phasc speed of the limit,ing neutral wave, to order ( y j / y o -  1)2, is 

(5 .2)  
1 aj a,[uf - (aj + U")21 

k!= T c j  1 +ai /a , ,+(~-l)  (aj+a,)2[.Uj2-2(aj+ao)2]' 

When y j  and yo are equal, (5.2) reduces to (5.1). 
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FIQURE 27. Pressure eigenfunctions of subsonic waves. Cold jet, Mach number 1.5, kRj = 15.0. 
(a) (0, I )  mode, (b) (0,3) mode, (c) (0,5) mode. 

6. Characteristics of subsonic waves 
As has been pointed out in $3, a t  high frequencies the subsonic waves continues 

into the supersonic instability waves. The major differences between these two 
families of waves are that the former are neutral waves (within the framework of the 
vortex-sheet jet model) with subsonic phase velocities relative to the ambient gas 
while the latter are spatially amplifying waves travelling with supersonic phase 
velocities. In addition, supersonic instability waves exist only when condition (2.13) 
is satisfied. On the other hand subsonic waves exist regardless of the jet Mach 
number and velocity. As in the case of supersonic instability waves, subsonic waves 
can be classified into modes by two integers (n,m). Again n is the azimuthal 
wavenumber and m is the radial wavenumber which is equal to the number of 
antinodes the pressure eigenfunction has. Figure 27 shows the pressure eigenfunction 
of the (0, l ) ,  (0,3) and (0,5) subsonic wave modes of a cold Mach number 1.5 jet a t  
kR, = 15.0. The antinodes are well defined so that no ambiguity could arise in 
assigning the m numbers. The eigenfunction distributions in figure 27 are typical of 
this entire family of waves. The disturbance decays quickly in the radial direction 
outside the jet so that the waves are essentially confined inside the jet flow. This is 
in complete agreement with the third set of waves observed by Oertel (1980), see 
figure 1. 

Subsonic waves exist in subsonic as well as in supersonic jets. One important 
difference being that for a given frequency there is only a finite number of subsonic 
modes in a subsonic jet whereas there are infinitely many such wave modes in a 
supersonic jet. As an illustration, figure 28 provides the dispersion relations of these 
waves for a subsonic jet of Mach number 0.6. For subsonic jets all the waves of this 
wave family propagate upstream. There is no downstream propagating subsonic 
waves. Being upstream propagating waves, they have negative group velocities. In 
other words, the slopes of the dispersion relations of figure 28 are negative. For 
supersonic jets there are upstream as well as downstream propagating subsonic 
waves. This point was discussed in $3 using the complex k-plane. Another way of 
seeing the existence of both upstream and downstream propagating subsonic waves 
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FIGURE 28. Dispersion relations of subsonic waves for a cold Mach number 0.6 jet. All waves 
propagate upstream. 
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FIGURE 29. Dispersion relations of subsonic waves for LC cold Mach number 1.5 jet. -, upstream 

propagating waves; -, downstream propagating waves; axisymmetric mode (n = 0). 
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FIGURE 30. Dispersion relations of subsonic waves for a cold Mach number 1.5 jet. -, 
upstream propagating waves; -, downstream propagating waves; helical mode (n = 1 ) .  
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FIGURE 31. Pressure eigenfunctions of upstream propagating subsonic waves. Cold jet, Mach 
number 1.5. (a)  (0 , l )  mode, kR, = 0.7, ( b )  (0,3) mode, kR, = 3.0, (c) (0,5) mode, ICR, = 5.5 

is to examine their dispersion relation. Figures 29 and 30 are typical dispersion 
relations of these waves for a supersonic jet. For each wave mode the dispersion 
relation exhibits a minimum slightly to  the right of the line w / k  = -ao. To the left 
of the minimum the waves have negative group velocities and, therefore, propagate 
upstream. To the right of the minimum the slope of the curve or group velocity is 
positive. Hence these waves propagate in the same direction as the jet flow. At the 
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minimum point the two wave modes coalesce. In other words there is a double zero 
in the k-plane. For frequencies lower than the minimum the double zero moves off the 
real k-axis to become a complex conjugate pair. They are, therefore, spatially 
evanescent waves propagating in opposite directions. 

For supersonic jets the range of frequencies over which upstream propagating 
subsonic waves are possible is restricted to narrow frequency band, see figures 29 and 
30. In  these figures it is observed that the dispersion relations of these waves lie very 
close to the line w / k = - a , .  Thus the phase speeds of these waves are equal to 
-ao. Figure 31 shows the pressure eigenfunctions associated with the upstream 
propagating subsonic waves. One important characteristic difference between these 
eigenfunctions and those of the downstream propagating waves, see figure 27, is that 
they extend well outside the jet flow. This is, of course, necessary, for unless the main 
part of the wave propagates outside the jet it would be swept downstream by the 
supersonic jet flow. The dispersion relations of upstream propagating subsonic waves 
terminate on the line o/k = -a,. The limiting behaviour of the dispersion relation at 
this line can be found directly from (2.7). In the limit w/k+-a,,?,  of (2.7) goes to 
zero. By means of the asymptotic formula for Hankel functions with small argument 
it is easy to show that (2.7) becomes, in the case of n = 0, 

where Mj = uj/aj is the jet Mach number. 
There are two types of solution to (6.1) 
(a )  w / k + - a o ,  k =l 0. This corresponds to the (0, m), m = 2 ,3 ,4 ,  . .., subsonic wave 

modes. In this case (6.1) reduces to 

Jl(ViRj) = 0,  (6.2) 

so that viRj = gmPl (m = 2 ,3 ,4 ,  ...) where 
relationship it is straightforward to find the limiting frequencies to be 

are the zeros of J1. From this 

(m = 2,3 ,4 ,  ...). (6.3) 
W R j  -+ --U?I-l k/lkl lim - 

olk+-a, uj 

These limiting frequencies are the starting point of the dispersion curves in figure 
29. 

(b )  w / k  + - a,, k + 0 simultaneously. This corresponds to the (0 , l )  subsonic wave 
mode. In this special case the solution of (6.1) has the form 

(6-4) 
where p and p are positive real constants. This form of the solution makes the term 
k In (voRj) --f finite instead of infinite as o/k + -a, in (6.1). For this particular solution 
the dispersion relation passes through the origin as shown in figure 29. It is to be 
noted that such a special solution does not exist for non-axisymmetric modes. 

w / k  + - a, +pe-@, 

For n 4 0, (2.7) in the limit w 1 k - t - a ,  reduces to 

this equation determines the limiting value of viRj from which the limiting 
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FIGURE 32. Spatial growth rates of supersonic instability waves as functions of Strouhel number. 
-, bfR, = 0 ;  ---, b / R j  = 0.02; -.-.- , blR, = 0.1; -..-..- , blR, = 0.2. Cold jet, Mach 
number 4.0. St = 2fR,/ui. 

frequencies can be easily found. These limiting frequencies are shown as the starting 
points of the dispersion curves in figure 30. 

7. Jets with finite thickness mixing layer 
In  Oertel’s experiments the shock-tube facility was able to produce jets with 

relatively thin mixing layers so that a vortex-sheet jet model is a good first 
approximation. To investigate the effects of finite mixing-layer thickness on the 
three families of waves the jet model of $2.2 is used. For the Kelvin-Helmholtz 
instability waves the finite thickness effects are well known. At a fixed Strouhal 

16.2 
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(0,l) mode blR,  

-0.12 
0 0.2 0.4 0.6 

(1 , l )  mode b l 4  I 
FIGURE 33. Dependence of the spatial growth rates of subsonic waves on the half-width of the 
mixing layer of a cold Mach number 2.0 jet at different Strouhal numbers. ---, St = 0.2; -, 
6 t  = 0.4; -.-.-, &'t = 0.8; , St = 1.2; -x-X-,  St = 1.6. 

/ 
number the spatial growth rate of the wave decreases with increase in mixing-layer 
thickness. The wave speed is, however, only slightly affected by shear-layer 
thickness. In this section, therefore, attention will be focused mainly on the 
supersonic and subsonic waves. 

According to the vortex-sheet model the supersonic waves of a high-speed jet are 
unstable. It turns out that by increasing the thickness of the shear layer of the jet 
the maximum spatial growth rate of each mode would generally be reduced. Figure 
32 shows the change in the spatial growth rates of these waves in a Mach 4.0 cold jet 
as the half width of the shear layer increases. As can be seen the change depends on 
the wave mode and the Strouhal number. For jets with thicker mixing layers the 
maximum growth rate occurs a t  lower Strouhal number. In  fact, the spatial growth 
rate a t  the low-frequency range may actually increase. On the other hand the growth 
rates of high-frequency waves do decrease with increase in mixing-layer thickness. 
Another interesting observation of figure 32 is that for jets with thin mixing layers 
the higher-order modes (both higher azimuthal and or radial mode number) have 
larger growth rates. Whereas for jets with realistic thickness the growth rates of the 
lower-order supersonic modes tend to be relatively larger, although they are smaller 
in an absolute sense. Unlike spatial growth rates, extensive numerical computations 
indicate that the phase velocities of supersonic instability waves are almost 
unaffected by mixing-layer thickness. This behaviour is similar to the Kelvin- 
Helmholtz instability waves. Thus as long as the jet mixing layer is fairly thin the 
phase velocity formulae of (5.1) and (5.2) are applicable. 

The effects of finite mixing-layer thickness on the subsonic waves of a high-speed 
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jet are quite unusual and unexpected. For supersonic jets with zero-thickness mixing 
layers the vortex-sheet model suggests that  they are neutral waves. However, 
calculations based on the finite shear-layer thickness jet model of 52.2 reveal that the 
downstream propagating modes are unstable waves. Figure 33 shows the spatial 
growth rates of a few of the low-order subsonic wave modes of a Mach 2.0 cold jet 
at several Strouhal numbers as functions of mixing-layer thickness. At a fixed 
Strouhal number a subsonic wave is unstable over a range of thicknesses. However, 
unlike the Kelvin-Helmholtz or the supersonic instability waves the maximum 
spatial growth rate does not occur at zero thickness. Instead, for each frequency 
there is an optimal thickness for maximum growth. Figure 34 provides basic 
information regarding the dependence of the growth rate on radial mode number. It 
is clear from this figure that higher-order radial wave modes tend to be less unstable. 
The same is true for higher-order azimuthal mode number. I n  other words, the low- 
order modes are the most unstable and hence they are most likely to be observed in 
experiments. 

Numerical studies indicate that the phase velocity of a subsonic wave is unaffected 
by the thickness of the shear layer over the range of b/R, up to  0.5. This aspect of 
the subsonic waves is similar to  that of the Kelvin-Helmholtz and the supersonic 
instability waves. For upstream propagating subsonic waves of supersonic jets the 
present investigation indicates little or no finite mixing-layer-thickness effect. The 
waves appear to remain neutral. The reason why finite mixing-layer thickness has 
different effects on upstream and downstream propagating waves is not clear. 
Although one major difference between upstream and downstream propagating 
waves is that the former has no critical layer whereas the latter does. However, 
whether this is, indeed, the reason for the absence of finite mixing-layer-thickness 
effect on upstream propagating subsonic waves remains an open question a t  this 
time. 

8. Summary of numerical results 
Extensive computations on the growth rates and propagation characteristics of the 

Kelvin-Helmholtz, the supersonic and the subsonic instability waves at various jet 
Mach numbers, jet to ambient temperature ratios and mixing-layer thicknesses have 
been carried out. Here the essence of these different results will be summarized with 
the aim of providing a unifying perspective. At low supersonic Mach numbers, jets 
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will support only the Kelvin-Helmholtz and the subsonic instability waves. Within 
this Mach number range the Kelvin-Helmholtz instability waves have large growth 
rates and are the dominant instability of the jet flow. Supersonic instability waves 
exist only when the jet flow velocity exceeds the sum of the jet and ambient speed 
of sound, i.e. uj > aj +a, (equation (2.13)). Unlike Kelvin-Helmholtz instability 
which has a single wave mode for each azimuthal wave number, supersonic 
instability waves consist of a family of wave modes for the same azimuthal 
wavenumber. For clarity, therefore, each supersonic instability wave mode is 
designated by an azimuthal and a radial mode number. The relative dominancy of the 
Kelvin-Helmholtz instability and the supersonic instability is a function of the jct 
Mach number and the jet to ambient temperature ratio. Figure 9 shows thc critical 
Mach number for a given temperature ratio below which the Kelvin-Helmholtz 
instability waves, having the largest growth rate, is the dominant instability. The 
critical Mach number arises because the spatial growth rates of the Kelvin-Helmholtz 
instability and the supersonic waves have exactly opposite jet Mach number 
dependence. It is well known that the Kelvin-Helmholtz instability becomes less and 
less unstable as the jet Mach number increases. On the other hand, numerical results 
obtained in the present investigation reveal that  the maximum growth rate of the 
supersonic instability waves increases steadily with Mach number (at least up to 
Mj = 5.0). The same is true for jet temperature. The effect of increasing the mixing- 
layer thickness of the jet, in general, is to reduce the spatial growth rates of the 
instability waves. For jets with reasonably thick shear layer (b/Rj = 0.1 to 0.2) the 
growth rates of the higher-order supersonic instability waves are greatly reduced so 
that only the low-order wave modes are important. When restricted to cold jets with 
Mach number up to  5.0 the Strouhal number of the most unstable wave lies in the 
range 0.25-0.55. The maximum spatial growth rate per jet diameter is 0.2-0.4. On 
comparing with the spatial growth rate of instability waves of subsonic jets these are 
relatively weak instabilities. One of the most interesting findings of the present 
numerical study is that  the phase or convection velocity of the most unstable 
supersonic instability wave non-dimensionalized by the jet velocity, as given by 
equation (5.1) (or equation (5.2) if the specific heat ratio of the gas of the jet is 
different from that of the ambient gas), is a function of the jet to ambient 
temperature ratio alone. That is to  say, formula (5.1) is valid regardless of jet Mach 
number, mode number and mixing-layer thickness (say for b/R, less than 0.3). 
According to  the work of Papamoschou & Roshko (1986) there is also reason to  
believe that this formula is applicable even to moderately large-amplitude waves. 
The subsonic waves of supersonic jets are unstable only if the mixing layer has a 
finite (but small) thickness. The growth rates of these waves are very small. They are 
the least unstable waves. It is found, somewhat unexpectedly, that there is a branch 
of these waves which can propagate upstream following the jet even when the jet flow 
is supersonic. How important these waves are is not clear at this time. Further work 
is needed to clarify whether these waves play any role in the feedback cycle of a 
screeching imperfectly expanded jet or an impinging jet directed a t  a wall. 

9. Discussion 
I n  this paper three families of waves with distinct wave patterns and propagation 

characteristics have been identified in high-speed jets. They are the Kelvin- 
Helmholtz instability waves, the supersonic and the subsonic instability waves. At 
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subsonic speeds jets are subjected to only one type of instability, namely, the 
Kelvin-Helmholtz instability. For these jets it has been found that the Kelvin- 
Helmholtz instability waves are responsible for the formation of large turbulence 
structures in the jet flow. These large structures control the dynamics and mixing of 
the jet fluid. For supersonic jets a t  low to moderate supersonic Mach number 
experimental observations suggest that the flow is dominated by similar dynamical 
processes. Recently Lepicovsky, Ahuja & Brown (1987) provided photographic 
evidence of the existence of Kelvin-Helmholtz instabilty waves in these jets at 
Reynolds number of 10' and higher. In  addition to being a key factor in the dynamics 
and mixing processes of moderately supersonic jets, Kelvin-Helmholtz instability 
waves have also been recognized to be the dominant source of jet mixing noise (see 
Troutt & McLaughlin 1982 ; Tam & Burton 1984). For imperfectly expanded jets the 
presence of a shock cell structure inside the jet flow leads to the radiation of 
additional noise. The additional noise consists of two components. One has discrete 
frequency and the other is broadband. They are generally referred to as screech tones 
and broadband shock associated noise (see Powell 1953; Davies & Oldfield 1962; 
Tam et al. 1986; Tam 1987). It has been shown that the additional noise components 
are generated by the interaction of the downstream propagating Kelvin-Helmholtz 
instability waves and the quasi-periodic shock cell structure (as the former pass 
through the latter). Thus the Kelvin-Helmholtz instability waves are important 
entities of a jet flow not only with respect to the dynamics and mixing processes but 
also in relation to the mechanisms of noise generation. 

Now in this paper it has been found that a t  high supersonic Mach number a jet can 
support two other types of instability waves. What role then would these new 
instability waves play in the turbulence dynamics, mixing processes and noise 
generation of these jets 2 Furthermore, it was found in $2.4 that beyond the critical 
Mach number the Kelvin-Helmholtz instability waves would merge with the 
supersonic instability waves and that the supersonic instability waves were actually 
the dominant instabilities. What then would this imply concerning the spreading 
rate and the noise spectrum of a jet as the jet Mach number increases and passes the 
critical value ? These are challenging questions which, however, are beyond the scope 
of the present investigation. 
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07-5-1130 and the Florida State University through time granted on its Cyber 205 
Supercomputer. The authors wish to thank Professor H. Oertel and the Directors of 
the Institute Franco-Allemand De Recherches De Saint-Louis for their generous 
cooperation and permission to reproduce figure 3 of ISL Report R 110/82. 

Appendix. Flow over a wavy cylindrical wall 
In this Appendix the flow over a cylindrical wavy wall as shown in figure 4 is 

considered. The flow inside is solved first. Then the flow outside with subsonic and 
supersonic velocity will be analysed. 

A.1. Supersonic $ow inside a cylindrical wavy wall 

Let the jet Mach number beMj and the radius of the cylindrical wall be Rj. Suppose 
the cylindrical surface is deformed radially into a wavy surface with radial 
displacement r = e sin az[sin nB or 00s nB] where ( r ,  8 , ~ )  are the cylindrical coordi- 
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nates with the x-axis coinciding with the axis of the cylinder. On starting from the 
linearized equations of motion the steady-state equation governing the perturbation 
pressure p(r ,  8, x) is easily found to be, 

w--v2p a2P = 0. 
j ax2 

The boundary condition on the wavy wall is 

The solution of (A 1)  satisfying boundary condition (A 2) is 

where Jn( ) is the Bessel function of order n. 

A.2.  Subsonic flow outside a cylindrical wavy wall 
On proceeding as above i t  is easy to  find that the pressure po(r, 8, x) outside a 
cylindrical wavy wall a t  subsonic flow Mach number, M, is given by 

cap, ui K,( (1 -M",)$ ar) sinax{ sin n6 } 
PJV, 894 = 

(1 -w0)tKn( (1  -lqp &Aj) oosn8 ' 

where K,( ) is the nth order modified Bessel function. 

vortex - shee t jet is 
From (A 3) and (A 4) the pressure imbalance at  the surface of a wavy cylindrical 

AP = po(Rj, 8 > x ) - ~ i ( R j ,  8, X) 

] sin ax  { sin 
- pjUj2Jn((Mj2-l)bRj) 

(q- l )q , ( (q- l )hzRj)  cos n8 

If a is chosen such that the terms inside the square brackets of (A 5) cancel each other 
then a wave with arbitrary amplitude E becomes possible. For these a there are 
neutral wave modes. The existence of unstable modes is possible but not guaranteed 
since the unsteady effects of the flow have not been included in the model. 

A.3. Supersonic flow outside a cylindrical wavy wall 
For M ,  > 1 similar consideration as above gives the following expression for the 
perturbation pressure 

p,(r, 8 , x )  = capout Im{  fig)((^:- 1) ta r )  eiaz} {sin no] 
(A 6) (W0- l)+ Hy((wo- l) taRj)  cosnB ' 

where If:)( ) is the nth order Hankel function of the first kind and Im{ 1 = the 
imaginary part of. It is straightforward to  show that at r = R, the pressure given by 
( A 6 )  cannot balance that of (A 3). Therefore, a t  supersonic convective Mach 
number no neutral waves are possible. 



Three families of instability waves of high-speed jets 483 

R E F E R E N C E S  

BRIMS, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press. 
CHAN, Y. Y. & WESTLEY, R. 

COHN, H. 1983 The stability of a magnetically confined radio jet. Astrophys. J. 269, 500-512. 
DAVIES, M. G. & OLDFIELD, D. E. S. 1962 Tones from a choked axisymmetric jet. Acoustics 12, 

FERRARI, A., TRUSSONI, E. & ZANINETTI, L. 1981 Magnetohydrodynamic Kelvin-Helmholtz 
instabilities Astrophysics - 11. Cylindrical boundary layer in vortex sheet approximation. 
Mon. Not. R. Astr. SOC. 196, 1051-1066. 

GILL, A. E. 1965 Instabilities of Top-Hat jets and wakes in compressible fluids. Phys. Fluids 8 ,  
1428-1430. 

LEPICOVSKY, J., AHUJA, K. K. & BROWN, W. H. 1987 Coherent large-scale structures in high 
Reynolds number supersonic jets. AIAA J. 25, 1419-1425. 

LIEPMANN, H. & PUCKETT, A. E. 1947 Introduction to Aerodynamics of a Compressible Fluid, pp. 
239-241. John Wiley & Sons. 

LIEPMANN, & ROSHKO, A. 1957 Elements of Gas Dynamics. John Wiley & Sons. 
LOWSON, M. V. & OLLERHEAD, J. B. 1968 Visualization of noise from cold supersonic jets. 

MICHALKE, A. 1984 Survey on jet instability theory. Prog. Aerospace Sci. 21, 159-199. 
MILES, J. W. 1958 On the disturbed motion of a plane vortex sheet. J .  Fluid Mech. 4, 

MOORE, C. J. 1977 The role of shear layer instability waves in jet exhaust noise. J. Fluid Mech. 

OERTEL, H. 1979 Mach wave radiation of hot supersonic jets. In Mechanics o j  Sound Generation. 
in Flows (ed. E. A. Muller), pp. 275-281. Springer. 

OERTEL, H. 1980 Mach wave radiation of hot supersonic jets investigated by means of the shock 
tube and new optical techniques. Proc. of the 12th Intl Symp. on Shock Tubes and Waves, 
Jerusalem (ed. A. Lifshitz & J. Rom), pp. 266-275. 

OERTEL, H. 1982 Coherent structures producing Mach waves inside and outside of the supersonic 
jet. Structure of complex Turbulent Shear Flow. IUTAM Symp. Marseille. 

PAPAMOSCHOU, D. & ROSHKO, A. 1986 Observations of supersonic free shear layers. AIAA paper 

PAYNE, D. G. & COHN, H. 1985 The stability of confined radio jets: the role of reflection modes. 
Astrophys. J. 291, 655-667. 

POWELL, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. L d .  B66, 
1039-1056. 

ROSALES, A. A. 1970 Shadowgraphic observation of the acoustic field and structure of cold 
axisymmetric supersonic jets. MS thesis, Dept of Aero. & Astro. MIT. 

TAM, C. K. W. 1971 Directional acoustic radiation generated by shear layer instability. J .  Fluid 
Mech. 46, 757-768. 

TAM, C. K. W. 1987 Stochastic model theory of broadband shock associated noise from supersonic 
jets. J .  Sound Vib. 116, 26k302. 

TAM, C. K. W. & BURTON, D. E. 1984 Sound generated by instability waves of supersonic flows. 
Part 2. Axisymmetric jets. J .  Fluid Mech. 138, 273-295. 

TAM, C. K. W. & Hu, F. Q. 1988 The instability and acoustic wave modes of supersonic mixing 
layers inside a rectangular channel. Submitted to J. Fluid Mech. 

TAM, C .  K. W., SEINER, J. M. & Yu, J. C. 1986 Proposed relationship between broadband shock 
associated noise and screech tones. J. Sound Vib. 110, 30S321. 

TROUTT, T. R. & MCLAUGHLIN, D. K. 1982 Experiments on the flow and acoustic properties of a 
moderate Reynolds number supersonic jet. J .  Fluid Mech. 116, 123-156. 

ZANINETTI, L. 1986 Numerical results on instabilities of top hat jets. Phys. Fluids 29, 332-333. 
ZANINETTI, L. 1987 Maximum instabilities of compressible jets. Phys. Fluids 30, 612-614. 

1973 Directional acoustic radiation generated by spatial jet 
instability. Can. Aero. & Space Inst. Trans. 6, 36-41. 

257-277. 

J .  Acoust. Soc. Am. 44, 624-630. 

538-552. 

80, 321-367. 

86-0 162. 




